Role of HUR in Malignant Peripheral
Nerve Sheat Tumors

Marta Palomo-irigoyen’, Encarni Pérez-Andrés’, Marta Iruarrizaga-Lejarreta', Adrian Barreira-Manrique?,
Miguel Tamayo-Caro!, Marta Varela! and Ashwin Woodhoo'-2

'Nerve Disorders Laboratory, CIC bioGUNE, Bilbao, Bizkaia, Spain
2|IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.

Malignant peripheral nerve sheath tumours (MPNSTSs) are highly Figure 1 : HuR is upregulated in human MPNSTs Figure 4: HuR depletion induces cell cycle arrest, apoptosis and
aggressive sarcomas with a strong metastatic potential and a senescence in MPNST cells.
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- Immunoprecipitation of ribonucleotide complexes (ribonucleoproteins) from cytoplasmic lysates of frozen human Figure 6: HUR promotes MPNST metaStaSiS in ViVO.

neurofibroma samples (n=8) and NF1-derived and sporadic MPNST samples (n=12) using an affinity-purified HuR or control
lgG antibody was performed, followed by purification and genome-wide microarray analysis of bound mRNAs (RIP-chip). (a)

Volcano plots show enrichment of transcripts most significantly bound to HUR compared with control IgG in neurofibromas a
(left panel) and MPNSTS (right panel) (Fold-change >1.5; Adjusted p-value<0.05). Venn diagram shows overlap between
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are plotted relative to normalized enrichment score (NES). Circles denotes the number of enriched genes in each category. O
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1. SL Carroll. Am J Pathol. 186 (3) - 464-77 (201 6) - Growth of MPNST cell line T265 is sensitive to constitutive HuR silencing in vitro. (d) Representative immunoblots of HUR sT——— - o o ooy o] :’ e vvr_on OOO —
. . _ expression after shRNA-mediated knockdown with two distinct HuR-specific sShRNAs (shHuR#1 and shHuR#2). GAPDH A LiEm g il ® sssoion] O
2. SJ Miller et al. EMB O Mol Med. 1 (4) 1 236-48 (2009) expression was used as a loading control. The percentage of HuR knockdown was quantified by densitometry. Technical 3 gy o ooyt B
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4 K AbdeImOhsen and M GOrOSpe Wlley Inte dSCp - COhSt.I'[Utlve HuR silencing p.rever_lts tumour formation in vivo. (g) .S.chematlc.: representation of xenotransplantation -(a) Heatmap representation of differentially expressed genes between shCtrl (n=3) or shHuR#1-expressing (n=3) T265
F)’GV RNA 1 (2) 21 4_29 (201 O) experiments. (h) Representative pictures of tumo.ulrs from nude mice injected with shCtr or shHuR#1 STS-26T MPNST MPNST cells (fold change >2 and adjusted p-value<0.05).
. _ cells, .5 weeks aftgr tra.nsplant (n=5) for each condltloq. Sca}le b'ar= 5_mm. _ _ _ -(b) Volcano plot of transcriptome profiles between shCtrl (n=3) or shHuR#1-expressing (n=3) T265 MPNST cells. Red
5_ WJ Jessen et al_ J Clln InveSl'_ 123 (1 ) 340-7 (201 3) - Inducible HuR silencing promotes tumour regression in vivo. (i) Schematic representation of xenotransplantation and blue dots represent genes significantly upregulated and downregulated in shHuR#1-expressing cells respectively
experiments using inducible HuR silencing strategy. (j) Representative pictures of tumours from nude mice injected with (fold change >2 and adjusted p-value<0.05).
shiCtr or sh'HuR#1 STS26T MPNST cells on left and right flank respectively at 20 days after injection (Day 20), and 10 -(¢) GSEA analysis of shCtrl and shHuR#1-expressing T265 MPNST cells for MSigDB Oncogenic signatures. Gene sets
days later (Day 30) with (+Dox) or without doxycycline diet (-Dox). (k) Waterfall plot showing change in tumour volume with FDR q values <0.25 are plotted relative to normalized enrichment score (NES). Categories with negative (/eff) and
(represented as log2 fold-change) of individual tumours from 20 days after transplant and after 10 days with or without positive (right) NES are down- or upregulated, respectively, in shCtrl cells. Circles denotes the number of enriched genes
doxycycline treatment for each 4 groups of mice: sh'Ctr (-Dox)(n=7), sh'Ctr (+Dox)(n=7), shiHuR#1 (-Dox)(n=7) and in each category and colour codes represent FDR q values as indicated.
shiHUR#1 (+Dox)(n=7). (I) Graph showing weight of excised tumours for each 4 groups of mice.
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